发布时间:2021-06-11 浏览量:0
[1] L. Hayflick and P.S.J.E.C.R. Moorhead, The serial cultivation of human diploid cell strains. 1961. 25(3): 585-621.
[2] R.D. Micco, V. Krizhanovsky, D. Baker, et al., Cellular senescence in ageing: from mechanisms to therapeutic opportunities. 2020.
[3] M. Storer, A. Mas, A. Robert-Moreno, et al., Senescence Is a Developmental Mechanism that Contributes to Embryonic Growth and Patterning. 2013. 155(5): 1119-1130.
[4] G.P. Dimri, X. Lee, G. Basile, et al., A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A, 1995. 92(20): 9363-7.
[5] Phenotype Specific Analyses Reveal Distinct Regulatory Mechanism for Chronically Activated p53 %J PLoS Genetics. 2015. 11(3).
[6] A. Peters, T.S. Nawrot, and A.A. Baccarelli, Hallmarks of environmental insults. Cell, 2021.
[7] R.D. Micco, M. Fumagalli, A. Cicalese, et al., Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. 2006. 444(7119): 638-42.
[8] J. Bartkova, N. Rezaei, M. Liontos, et al., Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. 2006. 444(7119): 633-637.
[9] Y. Ovadya, T. Landsberger, H. Leins, et al., Impaired immune surveillance accelerates accumulation of senescent cells and aging. 2018. 9(1).
[10] J.W. Harper and S.J. Elledge, The DNA damage response: ten years after. Mol Cell, 2007. 28(5): 739-45.
[11] M. Serrano, G.J. Hannon, and D.J.N. Beach, A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. 1993. 366(6456): 704-7.
[12] M. Serrano, H.W. Lee, L. Chin, et al., Role of the INK4a locus in tumor suppression and cell mortality. 1996. 85(1): 27-37.
[13] A DNA damage checkpoint response in telomere-initiated senescence %J Nature. 2003. 426(6963): 194-198.
[14] M.T. Hemann, M.A. Strong, L.Y. Hao, et al., The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. 2001. 107(1): 67-77.
[15] A.G. Bodnar, M. Ouellette, M. Frolkis, et al., Extension of Life-Span by Introduction of Telomerase into Normal Human Cells. 1998. 279(5349): 349-352.
[16] D. Chakravarti, K.A. LaBella, and R.A. DePinho, Telomeres: history, health, and hallmarks of aging. Cell, 2021. 184(2): 306-322.
[17] Y. Zhu, E.J. Doornebal, T. Pirtskhalava, et al., New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging (Albany NY), 2017. 9(3): 955-963.
[18] W. Li, Y. He, R. Zhang, et al., The curcumin analog EF24 is a novel senolytic agent. Aging (Albany NY), 2019. 11(2): 771-782.
[19] Y. Zhu, T. Tchkonia, T. Pirtskhalava, et al., The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 2015. 14(4): 644-58.
[20] L.J. Hickson, L.G.P. Langhi Prata, S.A. Bobart, et al., Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine, 2019. 47: 446-456.
[21] J.N. Justice, A.M. Nambiar, T. Tchkonia, et al., Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine, 2019. 40: 554-563.